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Abstract An emerging literature suggests that estimates of equilibrium climate sensitivity (ECS)
derived from recent observations and energy balance models are biased low because models project
more positive climate feedback in the far future. Here we use simulations from the Coupled Model
Intercomparison Project Phase 5 (CMIP5) to show that across models, ECS inferred from the recent historical
period (1979-2005) is indeed almost uniformly lower than that inferred from simulations subject to
abrupt increases in CO, radiative forcing. However, ECS inferred from simulations in which sea surface
temperatures are prescribed according to observations is lower still. ECS inferred from simulations with
prescribed sea surface temperatures is strongly linked to changes to tropical marine low clouds. However,
feedbacks from these clouds are a weak constraint on long-term model ECS. One interpretation is that
observations of recent climate changes constitute a poor direct proxy for long-term sensitivity.

Plain Language Summary Even if we remove the uncertainty associated with human behavior,
we still don’t know exactly how hot it is going to get. This is because warming associated with increased
atmospheric carbon dioxide triggers climate changes that themselves can accelerate or decelerate the
warming. The equilibrium climate sensitivity (ECS) is defined as the eventual warming in response to a
doubling of atmospheric CO,, and it is tempting to estimate this quantity from recent observations.
However, in climate models, the ECS inferred from recent decades is lower than the eventual warming for
two reasons. First, it takes the climate many centuries to fully come to equilibrium, and models indicate
that we should expect even more warming in the future. Second, the conditions experienced in the real
world seem to have given rise to especially low estimates of ECS, perhaps purely by chance. Climate models
indicate that not only are ECS estimates based on recent decades lower than the eventual warming, but
they may not even be predictive of that warming. A climate model that shows strong warming in response
to recent real-world conditions does not necessarily have high long-term sensitivity, and vice versa.

1. Introduction

Equilibrium climate sensitivity (ECS), defined as the equilibrium global mean temperature response to the
doubling of atmospheric carbon dioxide concentration, can be inferred by interpreting observations of tem-
perature change, top-of-atmosphere energy imbalance, and effective radiative forcing in an energy balance
framework (see Gregory et al., 2002; Lewis & Curry, 2015; Otto et al., 2013, among many examples).

However, a range of recent work (e.g., Armour, 2017; Gregory & Andrews, 2016; Zhou et al., 2016) suggests
that such estimates may underestimate equilibrium warming. The explanation for the bias has been inter-
preted in a variety of ways. The total increase in radiative forcing experienced contains contributions from a
range of forcing agents, each with a possibly unique efficacy (Hansen et al., 2005), that is, a different global
mean temperature response per unit change in radiative forcing. In this view the high efficacy of tropospheric
aerosols and land use change, which have formed a relatively large fraction of historical effective radiative
forcing, biases estimates of ECS relative to a future forcing dominated by greenhouse gases (Marvel et al.,
2016; Shindell, 2014). An alternative view notes that estimates of climate sensitivity are partly governed by the
partitioning between surface temperature changes and deep ocean heat uptake and that the efficacy of this
ocean heat uptake (Rose et al,, 2014; Rugenstein et al., 2016; Winton et al., 2010)—the rate at which heat is
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mixed into the deep ocean—may have been anomalously low during this historical period. This explanation
is intimately tied to the 1998-2013 “hiatus” (Fyfe & Gillett, 2014) in which sea surface temperature patterns
were dominated by anomalously cool conditions in the eastern tropical Pacific (Kosaka & Xie, 2013). Finally,
the energy balance framework, like the forcing-adjustment-feedback paradigm on which it is based, assumes
that perturbations to the climate system are small enough that feedbacks can be considered constant, but
recent experience (Armour et al., 2013; Gregory et al., 2015) shows that this assumption rarely holds even for
the quadrupled-CO, state from which ECS is frequently inferred.

What these interpretations have in common is the idea that relationships between forcing and response are
mediated by the spatial pattern of surface warming, especially the ocean surface, which warms more slowly
than land. Using experiments with preindustrial forcings and observed sea surface temperatures (SSTs) and
sea ice, Gregory and Andrews (2016) established, in the HadGEM climate model, that the climate feedback
parameter over the 1979-2005 Atmospheric Model Intercomparison Project (AMIP) period is systematically
higher than the equilibrium feedback parameter. Because ECS is inversely related to this parameter, this
implies an underestimate of the equilibrium sensitivity. Zhou et al. (2016) proposed a physical mechanism for
this difference: in the CESM climate model, the particular SST pattern realized during the AMIP time period
leads to enhanced tropical marine low cloud cover and a negative shortwave cloud feedback that does not
continue in the long term.

Here we show that both results apply more broadly to the collection of models participating in CMIP5. We use
a perfect-model paradigm to reaffirm that the temporal evolution of sea surface temperature makes it nearly
inevitable that any estimate of ECS based on observations of the recent past would be lower than the “true”
ECS and to demonstrate that the particular manifestation of surface warming to which the Earth has been
subject acts to amplify this bias. We show that the first component of bias could result from disequilibrium and
the emergence of feedbacks in future that have not been excited during historical warming, while the second
component may arise from the confounding of internal variability (noise) with forced response (signal).

2. Methods

We exploit data from the Coupled Model Intercomparison Project, Phase 5 (CMIP5; Taylor et al., 2012) to inves-
tigate the roles of SST patterns in apparent and long-term climate sensitivity in a multimodel framework. We
use three sets of experiments: (1) atmosphere-only simulations for the period 1979-2005, using observed sea
ice and SSTs, sea ice concentrations, and anthropogenic and natural forcings, labeled “amip”; (2) “historical”
simulations using the same forcings but in which sea ice and SSTs are predicted by fully coupled models; and
(3) “abrupt4xCO2"” simulations with coupled atmosphere-ocean models in which atmospheric carbon diox-
ide is abruptly quadrupled from preindustrial concentrations. In the perfect-model framework the historical
simulations constitute a plausible sample of the time-evolving SST patterns that might have occurred due to
internal variability and increasing forcing, while the amip experiments are constrained to reflect the pattern
of SST and sea ice that was actually experienced. Long-term change is inferred from abrupt4xCO2 simula-
tions which are generally integrated for 140 years following CO, quadrupling. This duration is not nearly long
enough to allow the deep ocean to approach equilibrium but allows significantly different patterns of ocean
warming to emerge after the initial decades when internal variabiity influences model feedbacks.

In the energy balance framework (see, e.g., Otto et al., 2013), ECS can be inferred from secular changes in
global and annual means of surface temperature AT, top-of-atmosphere energy imbalance AQ, and effective
radiative forcing AF as

For the amip and historical simulations we compute AT and AQ from model output as anomalies relative
to 1979-1988. Modeling centers did not, unfortunately, report effective radiative forcing for these transient
simulations, nor did they report model-specific values of F,,o, . In their absence we use, for every model, the
time series of historical forcing estimated in Myhre et al. (2013) and a canonical value of 5,0, =3.7 W m=2.
Any impacts on our results of systematic relationships between ECS and F are mitigated by likely correlations
between the F,, o, and F terms appearing in the numerator and denominator.

A climate feedback parameter A is inferred from these transient quantities as the regression slope of y = AF —
F; X . . e
AQagainstx = AT; ECSis then estimated as % ECS estimates are not highly sensitive to the methodology
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Inferred ECS used; regressing over 5 year running means or simply subtracting the first
AMIP decade from the last (not shown) yields similar results.
= :Ertl?;tczlxcoz Estimates of long-term ECS are those reported in Caldwell et al. (2014), which
104 were obtained by regressing annual mean temperature anomalies against
top of the atmosphere (TOA) energy balance changes (Forster et al., 2013;
0.8 Gregory et al., 2004). Because feedbacks in most models become more posi-
5 tive as time scales approach equilibrium (Armour, 2017; Gregory et al., 2015;
061 Proistosescu & Huybers, 2017), these estimates derived from 140 years of
‘ the abrupt4xCO2 experiments are themselves likely to underestimate the
47 | : eventual climate response after many centuries.
0.2 A l
I H 3. Results
00— : < T T : T : T 3.1. Apparent Equilibrium Climate Sensitivities in AMIP, Historical,
Estimated ECS (°C) and Long-Term Simulations
Figure 1. Equilibrium climate sensitivities inferred from amip (pink), Figure 1 shows the distributions of ECS inferred from the CMIP5 amip, histor-

historical (purple), and long-term (yellow) simulations, with kernel density ical, and abrupt4xCO2 simulations. The median value of ECS inferred from

estimates overplotted for visual clarity.

amip simulations (1.8°C) is significantly lower than the median inferred from

historical simulations (2.3°C). Because amip and historical simulations use
the same forcing over the same time period, this suggests that the specific realization of internal variability
experienced in recent decades provides an unusually low estimate of ECS. This interpretation is subject to
the caveats of the perfect-model framework, including our assumption that the models as a group provide
realistic descriptions of the mechanisms underlying observed climate variability.

The median ECS value inferred from historical simulations is, in turn, smaller than the median “long-term”
value (3.1°C). This suggests, as in Rose et al. (2014) and Armour (2017), that disequilibrium effects contribute
to an underestimate of ECS because model climate feedbacks become more positive in the far future.

The historical ECS range is large, with 90% of the samples in the range 1.6-3.9°C. This variability reflects inter-
model variations in the inferred ECS and neglects the intrinsic uncertainty in estimating ECS over a 26 year
period; the resulting spread is comparable to the spread in long-term ECS estimates (2.2-4.4°C). The distri-
bution inferred from amip simulations is more sharply peaked, although the long tail of high values means
that the 5-95% range (1.3-3.5°C) is not substantially smaller. This sharper peak of ECS values arises because
amip runs represent a single set of SST conditions by construction, while historical simulations represent a far
wider range of possible SST patterns and hence pattern-dependent feedbacks. Still, the amip spread is quite
large, given that all models are forced by identical SST patterns and, we assume, similar radiative forcings.

Supporting information Figure S1 shows the inferred ECS for each of the CMIP5 ensemble members on a
model-by-model basis. The intramodel spread in ECS inferred from historical simulations is larger in all mod-
els than the spread inferred from AMIP simulations; this is unsurprising, because all members of the AMIP
ensemble experience the same SST patterns while the SST patterns in the unconstrained historical ensembles
sample multiple realizations of internal variability. However, the intramodel spread in ECS inferred from AMIP
simulations is nonzero and almost 1 Kin some cases. The same general circulation model, forced by the same
radiative forcing and experiencing the same SSTs and sea ice, can yield different inferred climate sensitivities
over this short 26 year period. This suggests that while variations in SST pattern dominate differences in ECS
inferred from amip simulations, internal variability in the atmosphere and over land remains an important
source of variability in ECS estimates drawn from short observational records.

3.2. Relationships Between Sensitivities Calculated in Different Experiments

Many modeling centers submitted multiple amip and historical simulations. The distributions in Figure 1 are
calculated by giving each of these ensemble members associated with each CMIP5 model equal weight. We
can gain further insight into the differences between amip sensitivities and historical sensitivities by compar-
ing ensemble means on a model-by-model basis. Figure 2a, comparable to Figure S1 in Gregory and Andrews
(2016), shows the ensemble mean amip sensitivity and historical sensitivity for each model used to construct
Figure 1.In most models, the ensemble mean ECS estimate from historical simulations exceeds the ensemble
mean ECS estimate from AMIP simulations.
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Figure 2. (a) Ensemble mean ECS inferred from amip runs versus ensemble mean ECS inferred from historical runs. (b) Same as (a) but for historical and
long-term ECS inferred from abrupt4xCO2 experiments. (c) Same as (a) but for AMIP ensemble means and long-term ECS. (d) Histograms of the 1979-2005
inferred ECS bias relative to the model’s corresponding abrupt4xCO2 ECS.

The ensemble mean equilibrium climate sensitivity estimated from historical simulations is, in turn, gener-
ally less than the “long-term” ECS (Figure 2b). There is a weak but positive correlation (R = 0.39) between
the ensemble mean ECS inferred from a model’s AMIP simulations and the ECS inferred from the ensemble
average over that model’s historical simulations. This suggests that models with low sensitivity to the specific
SST patterns of the AMIP period also tend to have low sensitivity to other SST patterns realizable over the
same time period. The correlation between a model’s ensemble mean “historical” ECS and its long-term ECS is
more robust (R = 0.66). This larger correlation is likely due to the ensemble averaging process, which damps
internal variability relative to the forced response. If only one member of each ensembile is included, the cor-
relation between historical and long-term ECS is much smaller (R = 0.38), albeit significantly different from 0.
However, there is no correlation (R = —0.07) between a model’s inferred ECS in response to amip conditions
and its long-term sensitivity (Figure 2c). Across the collection of CMIP5 models there is no simple relationship
between the response to the SST pattern experienced in recent decades and the long-term response.

Figure 2d shows histograms of ECS bias for amip and historical simulations. This bias is defined as the
difference between the ECS inferred from a historical or amip simulation and the ECS calculated from the cor-
responding abrupt4xCO2 simulation on a model-by-model basis. The mean amip bias (1.4°C) is much larger
than the mean historical bias (0.8°C), even when considering the outliers (all members of the GISS physics
version 1 and 3 ensembles) where the amip ECS exceeds the abrupt4xCO2 ECS. This suggests that amip SST
conditions led to an especially severe underestimate of ECS. This underestimate may result from internal vari-
ability: the climate just happened to experience a particular SST pattern that caused a lower-than-average
bias. It could also arise from the failure of the coupled models to reproduce aspects of the forced response.

3.3. Tropical Marine Low Clouds as a Controlling Factor

The intermodel and intramodel spread in ECS inferred from amip experiments is striking, as different CMIP
models are forced with the same SST and sea ice conditions by construction. What, then, explains the differ-
ences in amip climate sensitivity? Zhou et al. (2016) use experiments with a single climate model to suggest
that decadal variations in cloud cover, particularly tropical marine low clouds, strongly bias estimates of ECS
over the recent historical period relative to long-term estimates. As shown below, this inference holds over a
broader range of CMIP5 models.
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Figure 3. (a) Tropical marine low cloud cover regions. Colors indicate the multimodel mean low cloud cover change,
defined as the (1996-2005) mean minus the (1979-1988) mean. (b) amip ECS and low cloud cover changes (last decade
minus first decade; averaged over the regions shown in Figure 3a) for each ensemble member of each CMIP5 model that
provided ISCCP simulator output. Members of the same model ensemble are represented by the same symbol. (c) Same
as (b) but for historical experiments

Following Qu et al. (2014), we calculate the average change in tropical marine low cloud cover ALCC in the
regions shown in Figure 3a for AMIP and historical experiments. Low clouds are identified by their apparent
cloud-top pressures greater than 680 hPa using the ISCCP simulator (Klein & Jakob, 1999; Webb et al., 2001).
Using the ISCCP simulator, which diagnoses the changes as would be observed from the TOA, limits the num-
ber of models but ensures that the cloud changes are precisely those that impact the TOA radiation budget
and hence the feedbacks. Changes are defined as the (1996 -2005) average minus the (1979-1988) average.

The differing responses of low clouds in these regions to the same imposed pattern of sea surface temperature
explains almost three quarters of the variance in ECS estimates in the amip simulations (Figure 3b): low appar-
ent sensitivity is associated with increases in low cloud cover. The relationship in historical simulations over
the same period (Figure 3c) is similarly negative (R = —0.74) and, despite the small number of models provid-
ing ISCCP simulator data, significantly different from 0 (p < 0.01). This suggests that low cloud cover changes
in these subtropical regions are important in determining the ECS inferred over the short observational period
regardless of SST pattern.

Relatively few models incorporated the ISCCP simulator, so not all CMIP5 models are represented in Figure 3.
However, the relationships between tropical marine low cloud cover change and inferred ECS are unlikely to
be artifacts of using a subset of CMIP5 models; changes in tropical marine shortwave radiative cloud effect
(a standard CMIP5 output available for many more models) yield similar results (supporting information).

These results, combined with those presented in Figure 2, suggest a need for caution in extrapolating ECS
estimated from observations of recent change to the far future. CMIP5 models’ sensitivity to the observed SST
patterns appears to be largely controlled by low cloud changes in the stratocumulus regions. This process
is also highly explanatory of the spread in historical ECS estimates, suggesting that low inferred sensitivities
for amip simulations may be an artifact of the particular SST pattern experienced —itself a combination of
external forcing and internal variability—and the changes in low clouds induced by this pattern. However,
observed low cloud changes in the stratocumulus regions are not predictive of future climate. Figure 2c indi-
cates that there is no simple relationship between a model’s amip sensitivity, largely controlled by low cloud
changes, and a model’s long-term sensitivity.

4. Conclusions

Our results are built on several antecedents. Gregory and Andrews (2016) established that the climate feed-
back parameter in the HadGEM model estimated from amip-like experiments with prescribed SST observed
over 1979-2005 is systematically higher than the equilibrium feedback parameter from this model,implying
that estimates of ECS from recent decades would be biased low. The link to cloud feedback was established by
Zhou et al. (2016) who used the CESM model to demonstrate that the particular observed SST pattern leads to
enhanced tropical marine low cloud cover and a negative shortwave cloud feedback that does not continue in
the long term. More recently, Silvers et al. (2017) showed similar responses in the Geophysical Fluid Dynamics
Laboratory (GFDL) models, contrasting increases in tropical low cloud cover during the recent low-sensitivity
period with decreases in tropical low clouds during an earlier period of higher sensitivity.
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We have shown that both results apply more broadly to the collection of models participating in CMIP5. In
such models, the ECS inferred from simulations using observed SSTs is lower than ECS in coupled simulations
over the same time period in which SSTs are allowed to evolve. These historical simulations, in turn, yield lower
ECS estimates than simulations in which CO, is abruptly quadrupled.

We suggest that a low bias in ECS inferred from temperature change, imbalance, and forcing over recent
decades is due to climate disequilibrium. Models tend to project more positive feedbacks in the far future
than in the recent past, and taking these centennial-scale modes into account largely reconciles historical and
long-term estimates (Proistosescu & Huybers, 2017). But, to the extent that the models participating in CMIP
provide a reliable sample of possible ocean states, those recent decades appear to have experienced a pattern
of sea surface temperatures that excited unusually negative feedback in tropical marine low clouds, leading
to an even lower estimate of climate sensitivity than would have been expected under more usual historical
conditions. The amip conditions appear to be unusual in the historical context due to the particular manifes-
tation of internal variability experienced. There also remains the nonexclusive possibility that coupled models
simply fail to capture important aspects of the real-world climate response to forcing. However the spatial
pattern of SST arose during the AMIP period, the fact remains that this SST pattern yields lower estimates of
ECS in models than most patterns produced by coupled historical simulations.

If greenhouse gas emissions continue to increase, then the resulting increase in radiative forcing will reduce
the role of internal variability, enhancing the signal-to-noise ratio. Nonetheless, the climate may pass through
a series of states where the feedbacks do not resemble those found at equilibrium. This suggests that there
are no direct analogues to be found in the recent past; the only way to experience equilibrium climate is to
wait for equilibrium. Moreover, while intermodel differences in amip ECS are largely explained by different
subtropical stratocumulus cloud changes, a model’s amip ECS is not predictive of its long-term ECS. Evidently,
other feedback are dominant in the long term, eventual stratocumulus changes are unrelated to recent stra-
tocumulus changes, or both. This suggests that ECS estimates inferred from recent observations are not only
biased but do not necessarily provide any simple constraint on future climate sensitivity.
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